224/Math.(N) 22-23 / 22111

B.Sc. Semester-II Examination, 2022-23 MATHEMATICS [Honours]

Course ID: 22111 Course Code: SH/MTH/201/C-3

Course Title: Real Analysis

[NEW SYLLABUS]

Time: 2 Hours Full Marks: 40

The figures in the right-hand margin indicate marks.

Candidates are required to give their answers in their own words as far as practicable.

Notations and symbols have their usual meaning.

UNIT-I

1. Answer any **five** from the following questions:

 $2 \times 5 = 10$

- a) Let A and B be two nonempty bounded subsets of \mathbb{R} . Prove that $\inf(A \cup B) = \min\{\inf A, \inf B\}.$
- b) Find sup A and inf A, where

$$A = \left\{ \frac{n + (-1)^n}{n} : n \in \mathbb{N} \right\}.$$

c) Prove that a convergent sequence is a cauchy sequence.

- d) If 0 < a < b determine $\lim_{n \to \infty} \left(\frac{a^{n+1} + b^{n+1}}{a^n + b^n} \right)$.
- e) Find the limit of the sequence $\{x_n\}$, where $x_1 = \sqrt{6}$ and $x_{n+1} = \sqrt{6 + x_n}$ for $n \ge 1$.
- f) Show that the series $\sum_{n=1}^{\infty} \frac{1}{n+n^2}$ converges.
- g) Examine if the set $S = \{x \in \mathbb{R} : 2x^2 5x + 2 > 0 \} \text{ is open in } \mathbb{R}.$
- h) Let S be a bounded subset of \mathbb{R} and T be a nonempty subset of S. Prove that $\sup_{S \to S} T \leq \sup_{S \to S} S$.

UNIT-II

2. Answer any **four** from the following questions:

 $5 \times 4 = 20$

- a) i) Let $\{x_n\}$ be a bounded sequence. Then show that $\overline{lim}x_n = \underline{lim}x_n$. Is $\{x_n\}$ convergent? Justify.
 - ii) Let $\{x_n\}$ and $\{y_n\}$ are bounded sequences. Then show that $\underline{\lim} x_n + \underline{\lim} y_n \leq \underline{\lim} (x_n + y_n).$
- b) i) Let S be a non-empty subset of $\mathbb R$ that is bounded above, and let a be any number in $\mathbb R$. Define the set

 $a + S := \{a + s : s \in S\}$. Prove that $\sup (a + S) = a + \sup (S)$.

- ii) Give an example of a divergent sequence $\{a_n\}$ of positive numbers with $\lim_{n\to\infty} \left\{ (a_n)^{\frac{1}{n}} \right\} = 1.$ 3+2
- c) Let $x_1 = 8$ and $x_{n+1} = \frac{1}{2}x_n + 2$ for $n \in \mathbb{N}$. Show that $\{x_n\}$ is bounded and monotone. Find the limit.
- d) i) Test the convergence of the series $1 \frac{1}{2} \left(1 + \frac{1}{3} \right) + \frac{1}{3} \left(1 + \frac{1}{3} + \frac{1}{5} \right) \dots$
 - ii) Show that the series $1 \frac{1}{4} + \frac{1}{7} \frac{1}{10} + \cdots$ is conditionally convergent. 3+2
- e) i) If $x \in \mathbb{R}$ and x > 0, show that there exists a natural number m such that $m-1 \le x < m$.
 - ii) Show that an infinite subset of an enumerable set is enumerable. 3+2
- f) i) Define interior point of a subset of \mathbb{R} . Let S be a subset of \mathbb{R} , prove that an interior point of S is a limit point of S.

(3)

ii) Give an example of subset of \mathbb{R} which is neither open nor cosed in \mathbb{R} . 4+1

[Turn Over]

UNIT-III

3. Answer any **one** of the following questions:

 $10 \times 1 = 10$

- a) i) Give an example of unbounded sequence that have a convergent subsequence.
 - ii) Determine whether the series $\sum_{n=1}^{\infty} (-1)^n \frac{n}{n^2+1}$ is absolutely or conditionally convergent.
 - iii) Find the derive set of A where $A = \left\{ \frac{1}{2^m} + \frac{1}{2^n} : m, n \in \mathbb{N} \right\}.$ 2+5+3
- b) i) If $\lim_{n\to\infty} x_n = l$ then show that $\lim \frac{x_1 + x_2 + \dots + x_n}{n} = l$.
 - ii) Let $u_n = 1 + \frac{1}{2} + \dots + \frac{1}{n} \log n$ and $v_n = 1 + \frac{1}{2} + \dots + \frac{1}{n-1} \log n$; $n \ge 2$. Show that $\{u_n\}_{n=1}^{\infty}$ is a monotone decreasing sequence and $\{v_n\}_{n=2}^{\infty}$ is a monotone increasing one and they converge to the same limit.
 - iii) Using the definition of a compact set, prove that a finite subset of $\mathbb R$ is a compact set in $\mathbb R$.

(4)

224/Math.(N)